<tbody id="k9ydq"></tbody>
    1. <rp id="k9ydq"></rp><rp id="k9ydq"><object id="k9ydq"><blockquote id="k9ydq"></blockquote></object></rp>

      1. <tbody id="k9ydq"><pre id="k9ydq"></pre></tbody>
          <tbody id="k9ydq"><pre id="k9ydq"></pre></tbody>

        1. <tbody id="k9ydq"><p id="k9ydq"></p></tbody>

          <th id="k9ydq"><track id="k9ydq"><rt id="k9ydq"></rt></track></th>
        2. <strong id="k9ydq"><sub id="k9ydq"><noframes id="k9ydq"></noframes></sub></strong>
          <rp id="k9ydq"><object id="k9ydq"></object></rp>
          <s id="k9ydq"><object id="k9ydq"><menuitem id="k9ydq"></menuitem></object></s><span id="k9ydq"><pre id="k9ydq"><rt id="k9ydq"></rt></pre></span>

        3. <progress id="k9ydq"><big id="k9ydq"><video id="k9ydq"></video></big></progress>
          <dd id="k9ydq"></dd>
          1. <button id="k9ydq"><object id="k9ydq"><listing id="k9ydq"></listing></object></button><s id="k9ydq"><object id="k9ydq"><listing id="k9ydq"></listing></object></s>
            <tbody id="k9ydq"></tbody>
            <span id="k9ydq"><pre id="k9ydq"><sup id="k9ydq"></sup></pre></span><rp id="k9ydq"></rp>

          2. <rp id="k9ydq"></rp>
            <li id="k9ydq"><acronym id="k9ydq"><u id="k9ydq"></u></acronym></li>

            1. <rp id="k9ydq"></rp>
            2. <ol id="k9ydq"></ol>



              1. Dinhthao, V., et al., Phase-Structure Effects of Electrospun TiO2 Nanofiber Membranes on As(III) Adsorption. Journal of Chemical and Engineering Data, 2013. 58(1): p. 71-77.

              2. Jiang, T., et al., Synergic effect within n-type inorganic-p-type organic nano-hybrids in gas sensors. Journal of Materials Chemistry C, 2013. 1(17): p. 3017-3025.

              3. Li, X., et al., Efficient adsorption of gold ions from aqueous systems with thioamide-group chelating nanofiber membranes. Chemical Engineering Journal, 2013. 229: p. 420-428.

              4. Nie, G., et al., Fabrication of polyacrylonitrile/CuS composite nanofibers and their recycled application in catalysis for dye degradation. Applied Surface Science, 2013. 284: p. 595-600.

              5. Nie, G.-D., et al., Progress on Applications of Inorganic Nanofibers Synthesized by Electrospinning Technique. Chemical Journal of Chinese Universities-Chinese, 2013. 34(1): p. 15-29.

              6. Tong, Y., et al., Electrochemical determination of dopamine based on electrospun CeO2/Au composite nanofibers. Electrochimica Acta, 2013. 95: p. 12-17.

              7. Vu, D., X. Li, and C. Wang, Efficient adsorption of As(V) on poly(acrylo-amidino ethylene amine) nanofiber membranes. Chinese Science Bulletin, 2013. 58(14): p. 1702-1707.

              8. Wang, S., et al., Fabrication of electroactive oligoaniline functionalized poly(amic acid) nanofibers for application as an ammonia sensor. Rsc Advances, 2013. 3(12): p. 4059-4065.

              9. Wang, Z., et al., Ultrasensitive Hydrogen Sensor Based on Pd-0-Loaded SnO2 Electrospun Nanofibers at Room Temperature. Acs Applied Materials & Interfaces, 2013. 5(6): p. 2013-2021.

              10. Yang, Y., et al., Carbon nanofibers decorated with platinum nanoparticles: a novel three-dimensional platform for non-enzymatic sensing of hydrogen peroxide. Microchimica Acta, 2013. 180(13-14): p. 1249-1255.

              1. Huang, B., C. Li, and J. Wang, Template synthesis and magnetic properties of highly aligned barium hexaferrite (BaFe12O19) nanofibers. Journal of Magnetism and Magnetic Materials, 2013. 335: p. 28-31.

              2. Li, C.-J., B.-N. Huang, and J.-N. Wang, Effect of aluminum substitution on microstructure and magnetic properties of electrospun BaFe12O19 nanofibers. Journal of Materials Science, 2013. 48(4): p. 1702-1710.

              3. Li, C.-J., et al., PA6@FexOy nanofibrous membrane preparation and its strong Cr (VI)-removal performance. Chemical Engineering Journal, 2013. 220: p. 294-301.

              4. Li, C.-J., et al., Ag+-loaded polystyrene nanofibrous membranes preparation and their adsorption properties for thiophene. Chemical Engineering Journal, 2013. 222: p. 419-425.

              5. Liu, Y.-j., J.-n. Wang, and C.-j. Li, Studies On Preparation Conditions Of Pet/Pva Composite Ultrafiltration Membranes Based On Electrospinning Technology. Acta Polymerica Sinica, 2013(9): p. 1137-1142.

              6. Xu, G.-R., J.-N. Wang, and C.-J. Li, Polyamide nanofilm composite membranes (NCMs) supported by chitosan coated electrospun nanofibrous membranes: Preparation and separation performance research. Desalination, 2013. 328: p. 31-41.

              7. Xu, G.-R., J.-N. Wang, and C.-J. Li, A New Strategy for the Synthesis of Iron-Oxide Nanocrystals by Using a Single-Spinneret Electrospinning Technique. Chemistry-an Asian Journal, 2013. 8(10): p. 2453-2458.

              8. Xu, G.-R., J.-N. Wang, and C.-J. Li, Template directed preparation of TiO2 nanomaterials with tunable morphologies and their photocatalytic activity research. Applied Surface Science, 2013. 279: p. 103-108.

              1. Chen, S., S. He, and H. Hou, Electrospinning Technology for Applications in Supercapacitors. Current Organic Chemistry, 2013. 17(13): p. 1402-1410.

              2. Ding, Y., et al., Flexible PI/BaTiO3 dielectric nanocomposite fabricated by combining electrospinning and electrospraying. European Polymer Journal, 2013. 49(9): p. 2567-2571.

              3. He, S., et al., Supercapacitors based on 3D network of activated carbon nanowhiskers wrapped-on graphitized electrospun nanofibers. Journal of Power Sources, 2013. 243: p. 880-886.

              4. Miao, Y.-E., et al., Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. Journal of Power Sources, 2013. 226: p. 82-86.

              5. Xiao, X., et al., Electrospun carbon nanofibers with manganese dioxide nanoparticles for nonenzymatic hydrogen peroxide sensing. Journal of Materials Science, 2013. 48(14): p. 4843-4850.

              1. Huang, C., et al., Disc-electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances. Journal of Biomedical Materials Research Part A, 2013. 101A(1): p. 115-122.

              2. Huang, C., et al., Heparin Loading and Pre-endothelialization in Enhancing the Patency Rate of Electrospun Small-Diameter Vascular Grafts in a Canine Model. Acs Applied Materials & Interfaces, 2013. 5(6): p. 2220-2226.

              3. Qiu, K., et al., Doxorubicin-loaded electrospun poly(L-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. Journal of Materials Chemistry B, 2013. 1(36): p. 4601-4611.

              4. Sheng, X., et al., Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. International Journal of Biological Macromolecules, 2013. 56: p. 49-56.

              5. Wang, S., et al., Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency. International Journal of Nanomedicine, 2013. 8: p. 2131-2139.

              6. Xu, Y., et al., Fabrication of Electrospun Poly(L-Lactide-co-epsilon-Caprolactone)/Collagen Nanoyarn Network as a Novel, Three-Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering. Tissue Engineering Part C-Methods, 2013. 19(12): p. 925-936.

              7. Yin, A., et al., Electrospinning collagen/chitosan/poly(L-lactic acid-co-epsilon-caprolactone) to form a vascular graft: Mechanical and biological characterization. Journal of Biomedical Materials Research Part A, 2013. 101A(5): p. 1292-1301.

              8. Zhang, K., et al., Fabrication of Silk Fibroin/P(LLA-CL) Aligned Nanofibrous Scaffolds for Nerve Tissue Engineering. Macromolecular Materials and Engineering, 2013. 298(5): p. 565-574.

              1. Cao, X., et al., In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating. Carbohydrate Polymers, 2013. 92(1): p. 571-576.

              2. Cao, X., et al., Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination, 2013. 316: p. 120-126.

              3. Cao, X., et al., Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers. Carbohydrate Polymers, 2013. 92(2): p. 2041-2047.

              4. Ding, B., Y. Si, and J. Yu, Progress in the Research of Electrospun Nanofibers for Environmental Applications. Materials China, 2013. 32(8): p. 492-502.

              5. Ge, J., et al., Amphiphobic fluorinated polyurethane composite microfibrous membranes with robust waterproof and breathable performances. Rsc Advances, 2013. 3(7): p. 2248-2255.

              6. Huang, W., et al., Highly sensitive formaldehyde sensors based on polyvinylamine modified polyacrylonitrile nanofibers. Rsc Advances, 2013. 3(45): p. 22994-23000.

              7. Li, Y., et al., Colorimetric sensor strips for lead (II) assay utilizing nanogold probes immobilized polyamide-6/nitrocellulose nano-fibers/nets. Biosensors & Bioelectronics, 2013. 48: p. 244-250.

              8. Lin, J., et al., Facile synthesis of robust amphiphobic nanofibrous membranes. Applied Surface Science, 2013. 276: p. 750-755.

              9. Lin, J., et al., Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale, 2013. 5(7): p. 2745-2755.

              10. Mao, X., et al., Novel fluorinated polyurethane decorated electrospun silica nanofibrous membranes exhibiting robust waterproof and breathable performances. Rsc Advances, 2013. 3(20): p. 7562-7569.

              11. Tang, X., et al., In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation. Nanoscale, 2013. 5(23): p. 11657-11664.

              12. Wang, N., et al., Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. Journal of Colloid and Interface Science, 2013. 398: p. 240-246.

              13. Wang, X., B. Ding, and B. Li, Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 2013. 16(6): p. 229-241.

              14. Wang, X., et al., Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science, 2013. 58(8): p. 1173-1243.

              15. Wang, X., et al., Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. Analyst, 2013. 138(17): p. 5129-5136.

              16. Wang, X., et al., Tuning hierarchically aligned structures for high-strength PMIA-MWCNT hybrid nanofibers. Nanoscale, 2013. 5(3): p. 886-889.

              1. Chen, R.-X., et al., Mechanism Of Nanofiber Crimp. Thermal Science, 2013. 17(5): p. 1473-1477.

              2. Dou, H., et al., A BELT-LIKE SUPERFINE FILM FABRICATED BY THE BUBBLE-ELECTROSPINNING. Thermal Science, 2013. 17(5): p. 1508-1510.

              3. Kong, H.-Y. and J.-H. He, A Modified Bubble Electrospinning for Fabrication of Nanofibers. Journal of Nano Research, 2013. 23: p. 125-128.

              4. Kong, H.-Y., et al., Highly Selective Adsorption of Plants' Leaves on Nanoparticles. Journal of Nano Research, 2013. 22: p. 71-84.

              5. Kong, H.-Y., J.-H. He, and R.-X. Chen, Polymer Liquid Membrane For Nanofiber Fabrication. Thermal Science, 2013. 17(5): p. 1479-1482.

              6. Li, H., H. Kong, and J.-H. He, PARTICLE-LIKE BEADS AND DAUGHTER JET CASCADES IN ELECTROSPINNING. Thermal Science, 2013. 17(5): p. 1421-1424.

              7. Pang, J., H. Kong, and J.-H. He, PVA-Based Nanographene Film By Electrospinning. Thermal Science, 2013. 17(5): p. 1449-1452.

              8. Wang, L., et al., Detachment of a Charged Nano-jet for Fabrication of Nanoporous Materials. Journal of Nano Research, 2013. 23: p. 117-124.

              9. Wang, P. and J.-H. He, Electrospun Polyvinyl Alcohol-Milk Nanofibers. Thermal Science, 2013. 17(5): p. 1515-1516.

              10. Wang, P. and J.-H. He, Electrospun Polyvinyl Alcohol-Honey Nanofibers. Thermal Science, 2013. 17(5): p. 1549-1550.

              1. Liu, Y. and L. Guo, Homogeneous Field Intensity Control During Multi-Needle Electrospinning via Finite Element Analysis and Simulation. Journal of Nanoscience and Nanotechnology, 2013. 13(2): p. 843-847.

              2. Liu, Y., et al., Fundamental Study on Needleless Electrospinning Based on Metal (Card) Clothing, in Nanotechnology and Precision Engineering, Pts 1 and 2, Z.Y. Jiang and Y.H. Kim, Editors. 2013. p. 103-107.

              1. Huang, S., et al., Preparation and Characterization of InN Nanofibers. Rare Metal Materials and Engineering, 2013. 42: p. 33-36.

              2. Huang, S., et al., Highly enhanced ultraviolet photosensitivity and recovery speed in electrospun Ni-doped SnO2 nanobelts. Applied Physics Letters, 2013. 103(14).

              3. Huang, S., et al., Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning. Journal of Materials Chemistry C, 2013. 1(39): p. 6463-6470.

              4. Li, H., et al., Visible photoluminescence from amorphous barium titanate nanofibers. Journal of Alloys and Compounds, 2013. 551: p. 131-135.

              5. Ou, G., et al., Oxygen Sensing Property of Cr Doped ZnO Nanofiber at Low Temperature. Rare Metal Materials and Engineering, 2013. 42: p. 29-32.

              6. Pan, W., et al., Electrospinning of Nanofibers for Photocatalyst. Current Organic Chemistry, 2013. 17(13): p. 1371-1381.

              1. Chou, Y., et al., BiOCl nanosheets immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic activity and reusable property. Applied Surface Science, 2013. 285: p. 509-516.

              2. Guan, H., et al., Controlled synthesis of Ag-coated TiO2 nanofibers and their enhanced effect in photocatalytic applications. Applied Surface Science, 2013. 280: p. 720-725.

              3. Su, C., et al., Photocatalytic Process of Simultaneous Desulfurization and Denitrification of Flue Gas by TiO2-Polyacrylonitrile Nanofibers. Environmental Science & Technology, 2013. 47(20): p. 11562-11568.

              4. Su, C., et al., TiO2 nanoparticles immobilized on polyacrylonitrile nanofibers mats: a flexible and recyclable photocatalyst for phenol degradation. Rsc Advances, 2013. 3(20): p. 7503-7512.

              5. Wang, W., et al., Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity. Ceramics International, 2013. 39(4): p. 3511-3518.

              6. Zhang, P., et al., An electron-rich free-standing carbon@Au core-shell nanofiber network as a highly active and recyclable catalyst for the reduction of 4-nitrophenol. Physical Chemistry Chemical Physics, 2013. 15(25): p. 10453-10458.

              7. Zhang, X., et al., One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. Journal of Hazardous Materials, 2013. 260: p. 892-900.

              8. Zhang, Z., et al., Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale, 2013. 5(2): p. 606-618.

              1. Jia, L., et al., Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. Journal of Materials Science, 2013. 48(15): p. 5113-5124.

              2. Jia, L., et al., Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Materials Science & Engineering C-Materials for Biological Applications, 2013. 33(8): p. 4640-4650.

              3. Jia, L. and X.-h. Qin, The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers. Journal of Thermal Analysis and Calorimetry, 2013. 112(2): p. 595-605.

              4. Jiang, G., S. Zhang, and X. Qin, High throughput of quality nanofibers via one stepped pyramid-shaped spinneret. Materials Letters, 2013. 106: p. 56-58.

              5. Li, X., et al., Thin film nanofibrous composite ultrafiltration membrane for oil removal from oilfield wastewater, in Leading Edge of Micro-Nano Science and Technology, H. Cong, B. Yu, and X. Lu, Editors. 2013. p. 99-102.

              6. Qin, X., et al., Characterization of poly (vinyl alcohol) nanofiber mats cross-linked with glutaraldehyde. Journal of Industrial Textiles, 2013. 43(1): p. 34-44.

              7. Qin, X., H. Wang, and S. Wu, Investigation on structure and thermal properties of electrospun cellulose diacetate nanofibers. Journal of Industrial Textiles, 2013. 42(3): p. 244-255.

              8. Qin, X.-H., D.-Q. Wu, and C.-C. Chu, Dual functions of polyvinyl alcohol (PVA): fabricating particles and electrospinning nanofibers applied in controlled drug release. Journal of Nanoparticle Research, 2013. 15(1).

              9. Wu, S.-H. and X.-H. Qin, Uniaxially aligned polyacrylonitrile nanofiber yarns prepared by a novel modified electrospinning method. Materials Letters, 2013. 106: p. 204-207.

              1. Cai, Y., et al., Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats. Renewable Energy, 2013. 57: p. 163-170.

              2. Cai, Y., et al., Fabrication, Structural Morphology and Thermal Energy Storage/Retrieval of Ultrafine Phase Change Fibres Consisting of Polyethylene Glycol and Polyamide 6 by Electrospinning. Polymers & Polymer Composites, 2013. 21(8): p. 525-532.

              3. Cai, Y., et al., Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy. Solar Energy Materials and Solar Cells, 2013. 109: p. 160-168.

              4. Feng, Q., et al., Immobilization of catalases on amidoxime polyacrylonitrile nanofibrous membranes. Polymer International, 2013. 62(2): p. 251-256.

              5. Huang, F., et al., Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application for Adsorption of Metal Ions. Materials, 2013. 6(3): p. 969-980.

              6. Ke, H., et al., Electrospun ultrafine composite fibers of binary fatty acid eutectics and polyethylene terephthalate as innovative form-stable phase change materials for storage and retrieval of thermal energy. International Journal of Energy Research, 2013. 37(6): p. 657-664.

              7. Ke, H., et al., Thermal and mechanical properties of nanofibers-based form-stable PCMs consisting of glycerol monostearate and polyethylene terephthalate. Journal of Thermal Analysis and Calorimetry, 2013. 114(1): p. 101-111.

              8. Ke, H., et al., Electrospun Form-stable Phase Change Composite Nanofibers Consisting of Capric Acid-based Binary Fatty Acid Eutectics and Polyethylene Terephthalate. Fibers and Polymers, 2013. 14(1): p. 89-99.

              9. Li, D., et al., Fabrication and Characterization of Polyamide6-room Temperature Ionic Liquid (PA6-RTIL) Composite Nanofibers by Electrospinning. Fibers and Polymers, 2013. 14(10): p. 1614-1619.

              10. Wang, Q., et al., Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning. Journal of Applied Polymer Science, 2013. 128(2): p. 1152-1157.

              11. Wang, Q., et al., Fabrication of hydrophilic nanoporous PMMA/O-MMT composite microfibrous membrane and its use in enzyme immobilization. Journal of Porous Materials, 2013. 20(3): p. 457-464.

              12. Wang, X., et al., Electromagnetic properties of hollow PAN/Fe3O4 composite nanofibres via coaxial electrospinning. International Journal of Materials & Product Technology, 2013. 46(2-3): p. 95-105.

              13. Xia, X., et al., Structures and properties of SnO2 nanofibers derived from two different polymer intermediates. Journal of Materials Science, 2013. 48(9): p. 3378-3385.

              1. Cui, W.-W., et al., Preparation and Biological Evaluation of Electrospun MSM/PLGA Dressing Containing Nano-silver. Chemical Journal of Chinese Universities-Chinese, 2013. 34(3): p. 679-685.

              2. Song, X., et al., Electrospun hydroxyapatite grafted poly(L-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. Composites Science and Technology, 2013. 79: p. 8-14.

              3. Song, X.-f., F.-g. Ling, and X.-s. Chen, Grafting Polymerization Of L-Lactide On Hydroxyapatite Nanoparticles. Acta Polymerica Sinica, 2013(1): p. 95-101.